skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Scheurer, Mathias S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The superconducting state and mechanism are among the least understood phenomena in twisted graphene systems. Recent tunneling experiments indicate a transition between nodal and gapped pairing with electron filling, which is not naturally understood within current theory. We demonstrate that the coexistence of superconductivity and flavor polarization leads to pairing channels that are guaranteed by symmetry to be entirely band-off-diagonal, with a variety of consequences: most notably, the pairing invariant under all symmetries can have Bogoliubov Fermi surfaces in the superconducting state with protected nodal lines, or may be fully gapped, depending on parameters, and the band-off-diagonal chiralp-wave state exhibits transitions between gapped and nodal regions upon varying the doping. We demonstrate that band-off-diagonal pairing can be the leading state when only phonons are considered, and is also uniquely favored by fluctuations of a time-reversal-symmetric intervalley coherent order motivated by recent experiments. Consequently, band-off-diagonal superconductivity allows for the reconciliation of several key experimental observations in graphene moiré systems. 
    more » « less
  2. Abstract Modern scanning probe techniques, such as scanning tunneling microscopy, provide access to a large amount of data encoding the underlying physics of quantum matter. In this work, we show how convolutional neural networks can be used to learn effective theoretical models from scanning tunneling microscopy data on correlated moiré superlattices. Moiré systems are particularly well suited for this task as their increased lattice constant provides access to intra-unit-cell physics, while their tunability allows for the collection of high-dimensional data sets from a single sample. Using electronic nematic order in twisted double-bilayer graphene as an example, we show that incorporating correlations between the local density of states at different energies allows convolutional neural networks not only to learn the microscopic nematic order parameter, but also to distinguish it from heterostrain. These results demonstrate that neural networks are a powerful method for investigating the microscopic details of correlated phenomena in moiré systems and beyond. 
    more » « less
  3. Collective excitations contain key information regarding the electronic order of the ground state of strongly correlated systems. Various collective modes in the spin and valley isospin channels of magic-angle graphene moiré bands have been alluded to by a series of recent experiments. However, a direct observation of collective excitations has been impossible due to the lack of a spin probe. Here we observe low-energy collective excitations in twisted bilayer graphene near the magic angle, using a resistively detected electron spin resonance technique. Two independent observations show that the generation and detection of microwave resonance relies on the strong correlations within the flat moiré energy band. First, the onset of the resonance response coincides with the spontaneous flavour polarization at moiré half-filling, but is absent in the isospin unpolarized density range. Second, we perform the same measurement on various systems that do not have flat bands and observe no indication of a resonance response in these samples. Our explanation is that the resonance response near the magic angle originates from Dirac revivals and the resulting isospin order. 
    more » « less
  4. null (Ed.)
  5. Scanning tunneling microscopy reveals lattice reconstruction in a moire material. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)